Ultraverse Wiki
Advertisement
Mesoamerican Long Count Calendar

The Mesoamerican Long Count Calendar

Mesoamerican Long Count calendar is a non-repeating, vigesimal (base-20) calendar used by several Mesoamerican cultures, most notably the Maya civilization. For this reason, it is sometimes known as the Maya (or Mayan) Long Count calendar. Using a modified vigesimal tally, the Long Count calendar identifies a day by counting the number of days passed since August 11, 3114 BC (Gregorian).[1] Because the Long Count calendar is non-repeating, it was widely used on monuments.

Background[]

Among other calendars devised in pre-Hispanic Mesoamerica, two of the most widely used were the 365-day solar calendar (Haab' in Mayan) and the 260-day ceremonial calendar, which had 20 periods of 13 days. This 260-day calendar was known as the Tzolk'in to the Maya and tonalpohualli to the Aztecs.

The Haab' and the Tzolk'in calendars identified and named the days, but not the years. The combination of a Haab' date and a Tzolk'in date was enough to identify a specific date to most people's satisfaction, as such a combination did not occur again for another 52 years, above general life expectancy.

Because the two calendars were based on 365 days and 260 days respectively, the whole cycle would repeat itself every 52 Haab' years exactly. This period was known as a Calendar Round.

To measure dates over periods longer than 52 years, the Mesoamericans devised the Long Count calendar.

Long Count periods[]

The Long Count calendar identifies a date by counting the number of days from August 11, 3114 BC. Rather than using a base-10 scheme, like Western numbering, the Long Count days were tallied in a base-20 scheme. Thus 0.0.0.1.5 is equal to 25, and 0.0.0.2.0 is equal to 40.

The Long Count is not consistently base-20, however, since the second digit (from the right) only counts to 18 before resetting to zero. Thus 0.0.1.0.0 does not represent 400 days, but rather only 360 days.

The following table shows the period equivalents as well as Mayan names for these periods.

Table of Long Count units
Days Long Count period Long Count period Approx solar years
1   = 1 K'in  
20 = 20 K'in = 1 Winal 1/18th
360 = 18 Winal = 1 Tun 1
7,200 = 20 Tun = 1 K'atun 20
144,000 = 20 K'atun = 1 B'ak'tun 395

The Mayan name for a day was k'in. Twenty of these k'ins are known as a winal (or uinal). Eighteen winals or 360 k'in make one tun. Twenty tuns are known as a k'atun. Twenty k'atuns make a b'ak'tun. There are also four rarely-used higher-order periods: piktun, kalabtun, k'inchiltun, and alautun.

Calculating Long Count dates[]

Mesoamerican numerals[]

Long Count dates are written with Mesoamerican numerals, as shown on this table. A dot represents one while a bar equals 5. The shell glyph was used to represent the zero concept. The Long Count calendar required the use of zero as a place-holder, and presents one of the earliest uses of the zero concept in history.

See also History of zero

Syntax[]

The Long Count dates are written vertically, with the higher periods (i.e. b'ak'tun) on the top and then the number of each successively smaller order periods until the number of days (k'in) are listed. As can be seen at left, the Long Count date shown on Stela C at Tres Zapotes is 7.16.6.16.18.

7 × 144000 = 1,008,000 days (k'in
16 × 7200 = 115,200 days (k'in)
6 × 360 = 2,160 days (k'in)
16 × 20 = 320 days (k'in)
18 × 1 = 18 days (k'in)
  Total days = 1,125,698 days (k'in)

The date on Stela C, then, is 1,125,698 days from August 11, 3114 BC, or September 1, 32 BC.

On Maya monuments, the Long Count syntax is more complex. The date sequence is given once, at the beginning of the inscription, and opens with the so-called ISIG (Introductory Series Initial Glyph) which reads tzik-a(h) hab’ [patron of Haab' month] ("revered was the year-count with the patron [of the month]").[2] Next come the 5 digits of the Long Count, followed by the tzolk'in date written as single gylph, and then by supplementary information. Most of this supplementary series is optional and has been shown to be related to lunar data, for example, the age of the moon on the day and the calculated length of current lunation.[3] The date is concluded by a glyph stating the day and month of the Haab year. The text then continues with whatever activity occurred on that date.

A drawing of a full Maya Long Count inscription is shown below (click here).

Origin of the Long Count calendar[]

The earliest Long Count inscription yet discovered is on Stela 2 at Chiapa de Corzo, Chiapas, Mexico, showing a date of 36 BC. This table lists the 6 artifacts with the 8 oldest Long Count dates.

Of the 6 sites, three are on the western edge of the Maya homeland and three are several hundred kilometers further west, leading most researchers to believe that the Long Count calendar predates the Maya.[4] La Mojarra Stela 1, the Tuxtla Statuette, Tres Zapotes Stela C, and Chiapa Stela 2 are all inscribed in an Epi-Olmec, not Maya, style.[5] El Baúl Stela 2, on the other hand, was created in the Izapan style. The first unequivocally Maya artifact is Stela 29 from Tikal, with the Long Count date of 292 AD (8.12.14.8.15), more than 300 years after Stela 2 from Chiapa de Corzo.[6]

Correlations between Western calendars and the Long Count calendar[]

JDN correlations
to the Maya creation date

(after Thompson 1971, et al.)
Name Correlation
Willson 438,906
Smiley 482,699
Makemson 489,138
Spinden 489,384
Teeple 492,662
Dinsmoor 497,879
-4CR 508,363
-2CR 546,323
Stock 556,408
Goodman 584,280
Martinez-Hernandez 584,281
GMT 584,283
Lounsbury 584,285
Pogo 588,626
+2CR 622,243
Kreichgauer 626,927
+4CR 660,203
Hochleitner 674,265
Schultz 677,723
Ramos 679,108
Valliant 679,183
Weitzel 774,078

There have been various methods proposed to allow us to convert from a Long Count date to a Western calendar date. These methods, or correlations, are generally based on dates from the Spanish conquest, where both Long Count and Western dates are known with some accuracy.

The commonly-established way of expressing the correlation between the Maya calendar and the Gregorian or Julian calendars is to provide number of days from the start of the Julian Period (Monday, January 1, 4713 BC) to the start of creation on 0.0.0.0.0 (4 Ajaw, 8 Kumk'u).

The use of software that is based on the proleptic Gregorian calendar can be problematic for:

  1. Historical research. For example the G.M.T. correlation is based dates in both calendars in the Chronicle of Oxcutzcab, Bishop Diego de Landa's Relación de las Cosas de Yucatán, and the Chilam Balam. If one were to try to correctly derive the G.M.T. correlation by using these dates in a program that used the proleptic Gregorian calendar it would fail because the Gregorian calendar was not in use at that time.
  2. Astronomical research. For example, to study ancient observations on stelae or in the codices, one may convert a Long Count to days, months, and years. This date would then be entered into an astronomy program. The astronomy program will use the standard Julian/Gregorian calendar so this will cause a major error.

2012 and the Long Count[]

According to the Popol Vuh, a book compiling details of creation accounts known to the K'iche' Maya of the Colonial-era highlands, we are living in the fifth world. The Popol Vuh describes the first four creations that the gods failed in making and the creation of the successful fifth world where men were placed. In the Maya Long Count, the previous creation ended at the start of a 13th b'ak'tun.

The previous creation ended on a long count of 12.19.19.17.19.[7] It has been suggested in many articles and books that this will be the end of this creation, the next pole shift or something entirely. In this age we are approaching the same count again, only there is a common misconception of the Maya's practice of abbreviating their dates to five decimal places. On monuments where the full date is shown, the end of creation is said to be October 21, 4772 AD. According to the Maya, there will be a baktun ending in 2012, a significant event being the end of the 13th 400 year period, but not the end of the world.[8]

Inscriptions beyond 2012[]

Maya stela occasionally show dates beyond 2012. Most of these are in the form of "distance dates", where a Long Count date is given with a distance date to be added. For example, on Tikal Stela 10 we find the following Long Count date: 9.8.9.13.0 8 Ahau 13 Pop (24th March 603 AD Gregorian) with a distance date of 10.11.10.5.8. The resulting date is given as 1.0.0.0.0.8 5 Lamat 1 Mol,[9] or 21st October 4772 AD – almost 3,000 years into the future.

References[]

  1. Although Coe (1994b), p. 75, gives August 13 as the date.
  2. Boot, p. 2.
  3. Notable in this sequence is the glyph with nine variant forms labeled G by early epigraphers. It has been connected with the cycle of Lords of the Night known from colonial era sources in Central Mexico but alternate explanations have also been offered. See Thompson.
  4. See e.g. Diehl, p. 186.
  5. Refer Section #05, "A sketch of prior documentation of epi-Olmec texts", in Peréz de Lara and Justeson (2005).
  6. Coe (2002), p.87.
  7. Various sources place this on other dates, notably on December 23; see for e.g. Schele and Friedel (1992).
  8. The Blue Chalice, Get Ready for Baktun 13!
  9. Note that the pictun coefficient is given as 1.
Advertisement